Research Interests

Here are some topics I am recently interested in:

Manuscripts & Preprints

(* for equal contribution; (α-β) for alphabetical ordering; papers with purple titles are not on arXiv yet)

Provable multi-party reinforcement learning with diverse human feedback Submitted


Huiying Zhong, Zhun Deng, Weijie Su, Steven Wu, Linjun Zhang




Taking a Break: The Optimal Stopping Problem for User Engagement Draft in progress


Zhun Deng, He Sun, Guannan Qu, David Parkes


Publications

(* for equal contribution; (α-β) for alphabetical ordering)

Conference Proceedings

2024


Learning and Forgetting Unsafe Examples in Large Language Models ICML 2024


Jiachen Zhao, Zhun Deng,  David Madras, James Zou, Mengye Ren



Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models ICLR 2024


Tom Zello, Todd Morrill*, Zhun Deng*,  Jake Snell, Toniann Pitassi, Richard Zemel


2023


Distribution-free Statistical Dispersion Control for Societal Applications  NeurIPS (spotlight, top 3% among submissions) 2023


Zhun Deng, Tom Zello, Jake Snell, Toniann Pitassi, Richard Zemel



PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification  NeurIPS 2023


Qianli Shen, Wai Hoh Tang, Zhun Deng, Apostolos Psaros, Kenji Kawaguchi



Decision-Aware Conditional GANs for Time Series Data  ICAIF  (oral presentation) 2023


He Sun, Zhun Deng, Hui Chen, David Parkes



How Does Information Bottleneck Help Deep Learning  ICML 2023


Kenji Kawaguchi*, Zhun Deng*, Xu Ji*, Jiaoyang Huang



Reinforcement Learning with Stepwise Fairness Constraints  AISTATS 2023 

Zhun Deng, He Sun, Zhiwei Steven Wu, Linjun Zhang, David Parkes



Understanding Multimodal Contrastive Learning and Incoportate Paired Data AISTATS 2023 


Ryumei Nakada, Ibriham Golluk, Zhun Deng, Wenlong Ji, James Zou,  Linjun Zhang



FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data  ICLR 2023


Zhun Deng, Jiayao Zhang, Linjun Zhang, Ting Ye, Yates Coley, Weijie Su, James Zou



Quantile Risk Control: a Flexible Framework for Bounding the Probability of High-loss Predictions  ICLR 2023


Jake Snell, Tom Zello, Zhun Deng, Toniann Pitassi, Richard Zemel



Happymap: A Generalized Multi-calibration Method  ITCS 2023


(α-β) Zhun Deng, Cynthia Dwork, Linjun Zhang


2022


When and How Mixup Improves Calibration  ICML 2022

Linjun Zhang*, Zhun Deng*, Kenji Kawaguchi, James Zou



Robustness Implies Generalization via Data-dependent Generalization Bounds ICML (long presentation, top 2% among submissions) 2022 

Kenji Kawaguchi, Zhun Deng, Kyle Luh, Jiaoyang Huang



An Unconstrained Layer-Peeled Perspective on Neural Collapse  ICLR 2022


Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, Weijie Su


2021


Adversarial Training Helps Transfer Learning via Better Representations  NeurIPS 2021

Zhun Deng*, Linjun Zhang*, Kailas Vodrahalli, Kenji Kawaguchi, James Zou


Toward Better Generalization Bounds with Locally Elastic Stability  ICML 2021

Zhun Deng, Hangfeng He, Weijie Su


Improving Adversarial Robustness via Unlabeled Out-of-Domain Data  AISTATS (oral presentation, top 3% among submissions) 2021

Zhun Deng*, Linjun Zhang*, Amirata Ghorbani, James Zou


How Does Mixup Help With Robustness and Generalization?  ICLR (spotlight, top 5% among submissions) 2021

Linjun Zhang*, Zhun Deng*, Kenji Kawaguchi*, Amirata Ghorbani, James Zou


The Role of Gradient Noise in the Optimization of Neural Networks  IEEE Big Data 2021

(α-β) Zhun Deng, Jiaoyang Huang, Kenji Kawaguchi


2020


Interpreting Robust Optimization via Adversarial Influence Functions  ICML 2020

(α-β) Zhun Deng, Cynthia Dwork, Jialiang Wang, Linjun Zhang


Towards Understanding the Dynamics of the First-Order Adversaries  ICML 2020

Zhun Deng, Hangfeng He, Jiaoyang Huang, Weijie Su


2018


The Number of Independent Sets in Hexagonal Graphs ISIT 2018

Zhun Deng, Jie Ding, Kathryn Heal, Vahid Tarokh



Workshop Proceedings

2023


Last-layer Fairness Fine-tuning is Simple and Effective for Neural Networks  ICML Workshop 2023

Yuzhen Mao,  Zhun Deng, Huaxiu Yao, Ting Ye, Kenji Kawaguchi, James Zou


2019


Differential Privacy After the Fact: The Case of Congressional Reapportionment  TPDP 2019

(α-β) Zhun Deng, Cynthia Dwork, Adam Smith



Journal Publications

2024


Making Predictors More Reliable with Selective Recalibration  Transactions on Machine Learning Research 


Tom Zollo, Zhun Deng,  Jake Snell, Toniann Pitassi, Richard Zemel


2023


The Power of Contrast for Feature Learning: A Theoretical Analysis  The Journal of Machine Learning Research (JMLR), 24(330):1-78, 2023.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, Linjun Zhang


2022


Understanding Dynamics of Learning Nonlinear Representations and its Application  Neural Computation, 34(4), 991-1018, MIT Press, 2022.

Kenji Kawaguchi, Linjun Zhang, Zhun Deng

Talks